MPI n°5 : Acquisition informatisée - Caractéristique d'un dipôle

- Utiliser un montage potentiométrique
- Effectuer des mesures à l'aide de l'interface ORPHY
- **Objectifs**:
- Obtenir les caractéristiques d'un conducteur ohmique et d'une diode à l'aide d'une chaîne d'acquisition.

1. Protocole expérimental

1.1. Montage potentiométrique

Un potentiomètre est un élément de circuit comportant trois bornes. C'est en fait un conducteur ohmique dont la résistance est réglable. Son symbole est représenté ci-contre:

Réaliser le montage ci-contre.

A près manipulation, en déduire l'intérêt d'un montage potentiométrique ?

1.2. Montage expérimental

 $\$ Réaliser le montage ci-contre. On prend R = 470 Ω .

 \mathscr{P} Comment l'utiliser pour tracer la caractéristique $U_{BC} = f(I)$ du conducteur ohmique ?

.....

1.3. Acquisition informatisé avec Orphy

Objectif : Utiliser **ORPHY** pour suivre l'évolution de la tension U_{BC} en fonction de I.

ORPHY est une interface informatique permettant la mesure de tensions analogiques et leur conversion numérique de façon à les rendre exploitables par un ordinateur.

Branché sur ORPHY, le boitier **MODULE TEST** peut être utilisé pour raccorder un montage électrique à ORPHY :

• La borne **REF** d'ORPHY est l'équivalent de la borne **COM** d'un voltmètre.

• La borne EAO est l'équivalent de la borne V.

Sur le schéma précédent, représenter le raccordement d'ORPHY permettant la mesure de U_{BC}.

Réaliser le raccordement.

☞ La tension délivrée par le générateur est égale à 6V. On utilisera donc la borne EAO qui permet d'utiliser des tensions de 0 à 30V. En utilisant l'autre borne, limitée à 5V, on risque d'endommager l'interface. Basculer l'interrupteur d'ORPHY sur la position 0V.

2. Mesures

2.1. Pilotage de l'interface

🕗 Ouvrir le logiciel GTS 🕵 (il permet le pilotage informatique de l'interface).

Paramétrer la voie EAO :

- Cliquer sur la fenêtre de la Voie EAO.
- Nommer la tension de la voie EAO : Ubc.
- Décocher « ref alt ». Cliquer sur « activer ».
- En déplaçant le curseur du montage potentiométrique, vérifier la mesure de la tension U_{RC}.

Choix du mode d'acquisition :

Les valeurs de I ne sont pas mesurées par ORPHY. Elles sont lues sur le multimètre et doivent donc être rentrées manuellement. Pour cela :

- Cliquer sur la fenêtre «mode et option », puis Cocher « Clavier» et valider
- Définir les caractéristiques de l'intensité I que l'on veut entrer manuellement :

Désactiver les voies inutiles.

Acquisition au clavier 🛛 🔀				
- <u>G</u> randeur p	bhysique			
Symbole	Ima			
<u>U</u> nité	mA			
Signif.				
Minimum	0			
Maximum	15	X Abandon		

2.2. Acquisition des mesures

☞ Pour chaque position du curseur du potentiomètre, entrer la valeur de I lue sur le multimètre puis **<u>ENREGISTRER</u>** la mesure (taper sur la touche « **entrée** »).

☞ Vérifier que vos résultats (U_{BC} et Ima) s'inscrivent au fur et à mesure dans le tableau à droite de l'écran. Une fois la série de mesure terminée, enregistrer votre série de mesures.

3. Exploitation des résultats à l'aide du logiciel regressi

3.1. Transfert des données

REGRESSI est un tableur scientifique. GTS permet un transfert direct des données vers REGRESSI. ☞ Dans la barre de menu, cliquer sur l'icône « <u>Regressi</u> » Une boite de dialogue s'ouvre ⇔ <u>Ok</u>

Une nouvelle fenêtre s'ouvre : c'est la fenêtre principale de Regressi.

Cliquez sur l'icône pour accéder à la fenêtre « Grandeurs », cliquer sur l'onglet Variables et vérifier que vos valeurs ont été correctement transférées.

3.2. Création d'une nouvelle variable

Avant de tracer la caractéristique de notre dipôle, il nous faut créer une variable I pour l'intensité en ampère :

- Torns la fenêtre Grandeurs, cliquer sur 1 ; Une fenêtre s'ouvre : Cocher O Grandeur calc.
- Définir la nouvelle variable : Nom : I ; Unité : A ; Expression de la fonction : I =
- ☞ Cliquer sur 🗹 (icône de mise à jour !) ou appuyer sur F2

3.3. Tracé de la caractéristique du conducteur ohmique

Cliquez sur l'icône pour accéder à la fenêtre « Graphique », tracer la caractéristique U_{BC} =f(I) :

Choisir pour cela l'abscisse et l'ordonnée appropriées en cliquant sur

P Après avoir choisi les options graphiques de votre choix, imprimer votre courbe.

3.4. Modélisation : LOI de fonctionnement expérimentale

REGRESSI offre une fonction de modélisation mathématique :

☞ Cliquer sur wie puis wie et sélectionner le modèle prédéfini adapté à l'allure de votre courbe.

^{cer} Quelle est la valeur de la résistance de ce conducteur ohmique ? : R = _ _ _

En déduire la loi de fonctionnement expérimentale du conducteur ohmique étudié :

4. Prolongement : caractéristique d'une DEL

L'objectif ici va être double :

- Etablir la caractéristique d'un nouveau dipôle : La diode
- Eviter la mesure manuelle de l'intensité, par une acquisition entièrement avec ORPHY.

4.1. Montage expérimental

ORPHY ne permet pas de mesurer directement une intensité !

Il faut donc avoir recours à une astuce pour pouvoir « mesurer » l'intensité du courant traversant la diode.

L'astuce : Brancher un conducteur ohmique, de résistance R, en série avec la diode. **Ce sera notre « capteur »** d'intensité.

✓ ORPHY ne mesure que des tensions. Quelles sont les tensions qui vont être mesurées ici ?
 ⇒ Sur la voie EA0 :

Il nous reste à voir comment utiliser les tensions mesurées pour calculer l'intensité I !

Appliquer la loi d'Ohm aux bornes du conducteur ohmique de résistance R et en déduire une relation permettant de calculer I :

Etablir une relation permettant de calculer U_{AB} à partir des tensions mesurées par ORPHY :

En déduire une relation permettant de calculer I une relation à partir des tensions mesurées par ORPHY :

4.2. Acquisition des données

- Ouvrir le logiciel GTS.
- Tranétrer les voies EAO et EA1. Puis, en déplaçant le curseur, vérifier la mesure des deux tensions.
- $\$ Choix du mode d'acquisition : cliquer sur la fenêtre «mode et option », puis cocher « o point par point» \Rightarrow \checkmark OK
- Désactiver les voies inutiles.

Acquisition des mesures: pour chaque position du curseur du potentiomètre, cliquer sur « acquisition ».

4.3. Transfert des données et Création de la variable Intensité

Tomme au 3.1, transférer vos données dans **REGRESSI**.

Tons la fenêtre <u>Grandeurs</u>	, cliquer sur	🋂 ; Une fer	nêtre s'ouvre : Cocher
Définir la nouvelle variable	: Nom: ;	; Unité : A	; Expression de la fonction : =

☞ Cliquer sur 🗹 (icône de **mise à jour** !) ou appuyer sur F2

4.4. Etude de la caractéristique de la d.e.l.

^{ce} Dans la fenêtre **graphique**, tracer la caractéristique **U**_{BC} **=f(I)** de la diode.

La tension aux bornes d'une diode varie-t-elle proportionnellement à l'intensité du courant qui la traverse ?

Une diode n'est « *passante* » qu'au-delà d'une certaine tension à ses bornes, dite tension de seuil.
Justifier ce que l'on entend par cette phrase, à partir de l'observation de la courbe.

.....

Déterminer graphiquement la valeur de la tension de seuil de la diode étudiée : U_s =